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ABSTRACT:  
Small and medium-sized bakery enterprises (SMEs) often face inefficiencies due to manual scheduling 
and limited automation. These challenges are most evident in coordinating multiple interdependent 
production stages such as fermentation, proofing, and baking. A common problem is suboptimal oven 
usage—long idle periods between batches lead to excessive energy consumption and environmental 
burden. This paper introduces an intelligent scheduling approach that combines agent-based modeling 
with metaheuristic optimization. Bakery production is modeled as a no-wait flexible flow process, and 
the system applies bio-inspired algorithms, specifically the Whale Optimization Algorithm (WOA) and 
Firefly Algorithm (FA),  to generate optimized daily schedules. The approach adapts to real-world 
operational constraints, enabling dynamic scheduling across diverse bread types with differing 
production times, such as sourdough and brioche. 
Simulation experiments based on realistic bakery production scenarios show that the proposed 
scheduling approach can shorten total production time and reduce oven idle periods. The system 
supports both productivity and environmental sustainability by enabling SMEs to better manage time 
in energy-intensive stages of production, such as baking. This research contributes to the UN 
Sustainable Development Goals, particularly SDG 9 (Industry, Innovation and Infrastructure) and 
SDG 12 (Responsible Consumption and Production), by proposing an accessible digital approach to 
support SME transformation toward smarter and greener food manufacturing.  
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1. Introduction 
 

Small and medium-sized enterprises (SMEs) in the food production sector, 
particularly artisan bakeries, play a vital role in local economies and food security. These 
bakeries typically operate with limited automation and rely heavily on structured manual 
workflows. Although this lean operational model supports flexibility and low capital costs, 
it often introduces scheduling inefficiencies, particularly in coordinating multiple 
interdependent processing stages such as mixing, proofing, baking, and cooling. A 
prominent source of inefficiency lies in the utilization of shared resources, especially ovens, 
where long idle periods between batches result in extended makespan, underutilized 
capacity, and increased energy consumption. 
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Manual scheduling strategies in such settings often follow simple heuristics. The 
First-In-First-Out (FIFO) approach, for instance, prioritizes job execution based on arrival 
sequence, while Shortest Processing Time (SPT) schedules jobs in increasing order of total 
processing duration. These techniques are intuitive and easy to implement, but they 
frequently overlook the complexity of multi-stage workflows and resource contention. As 
a result, manual scheduling often leads to suboptimal resource usage and inflated 
production time, particularly when longer jobs (e.g., sourdough) dominate early stages and 
delay shorter ones (e.g., burger buns). 

To address these limitations, recent studies have explored the application of 
metaheuristic algorithms, computational strategies inspired by natural phenomena, for 
solving complex scheduling problems. Metaheuristics such as the Firefly Algorithm (FA) 
and Whale Optimization Algorithm (WOA) have demonstrated effectiveness in diverse 
domains including manufacturing, logistics, and energy systems. These algorithms are 
particularly attractive for bakery production scheduling due to their ability to explore large 
search spaces, escape local optima, and adapt to real-world constraints such as no-wait 
requirements and heterogeneous job durations. 

Previous research has also demonstrated the potential of integrating metaheuristic 
optimization with multi-agent architectures to solve dynamic scheduling problems 
(Nugraheni & Abednego, 2013). Building on this foundation, the present study applies a 
similar agent-based perspective to the context of bakery production, where jobs and 
machines will later be modeled as intelligent agents interacting over shared resources. 

In this study, we model the daily production workflow of a small-scale Indonesian 
bakery as a no-wait flexible flow shop, where multiple bread types (sourdough, brioche, 
toast bread, burger buns) must pass through shared resources with varying process 
durations. The study compares four scheduling strategies: two heuristics (FIFO, SPT) and 
two metaheuristics (FA, WOA), applied with both fixed and greedy resource assignments. 
The primary performance indicators include makespan (total production time) and oven 
idle time (as a proxy for energy inefficiency).  
 
2. Literature Study 

Research on production scheduling in small and medium-sized bakery enterprises 
has gained increasing attention in recent years, particularly due to the sector’s role in local 
food supply chains and its susceptibility to inefficiencies in resource usage. Several studies 
highlight the challenges of coordinating multi-stage production in bakeries, especially 
under no-wait constraints and variable job durations (Nouri et al., 2021; Yildiz & Yildiz, 
2020). These constraints are commonly addressed through flexible flow shop scheduling 
models, which have been shown to reflect the operational characteristics of SME bakeries 
more accurately than classical job shop models (Wang et al., 2019). 

Heuristic methods such as FIFO and SPT have traditionally been employed in 
practice due to their simplicity and low computational cost. However, their effectiveness 
is limited when dealing with complex multi-stage production processes involving shared 
resources. As noted by Nasution et al. (2020), such heuristics can result in bottlenecks and 
long idle times, especially when longer jobs occupy critical resources early in the schedule. 
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To overcome these limitations, metaheuristic algorithms have emerged as 
powerful tools for production scheduling. The Firefly Algorithm (FA), introduced by Yang 
(2009), has been applied in manufacturing systems for its simplicity and strong 
convergence properties. Recent studies by Alkahtani et al. (2021) and Sahu et al. (2022) 
demonstrate the effectiveness of FA in minimizing makespan and balancing resource 
utilization in flow shop environments. Similarly, the Whale Optimization Algorithm 
(WOA), proposed by Mirjalili and Lewis (2016), has been successfully implemented for 
scheduling problems involving complex constraints. Its applications in industrial settings 
include hybrid flow shops, robotic cell scheduling, and batch processing systems (Gomes 
da Silva et al., 2023; Pradana et al., 2021). In a related study, Nugraheni et al. (2025) applied 
WOA for production scheduling in Indonesian bakery SMEs, demonstrating its suitability 
in capturing real-world constraints. Further developments explored WOA-based solvers 
for no-wait FFS problems (Jonathan et al., 2024). 

Additionally, agent-based modeling has been increasingly adopted for simulating 
production systems and developing decentralized scheduling frameworks. According to 
Garro and Vetrano (2019), agent-based systems provide flexibility, scalability, and 
adaptability in dynamic environments. In the context of SME bakeries, such models can 
facilitate autonomous decision-making by representing each job or machine as an 
intelligent agent capable of negotiating for resource access and managing time-sensitive 
tasks. Similar agent-based scheduling frameworks have also been explored in the context 
of single-machine production systems. Nugraheni and Abednego (2013) proposed a multi-
agent architecture that integrates hyper-heuristics with agent coordination to address 
dynamic scheduling challenges. Their results demonstrated the scalability and flexibility of 
agent-based control when coupled with heuristic-based decision-making in real production 
environments. 

These existing works form the foundation for the present study, which integrates 
a no-wait flexible flow shop model with metaheuristic scheduling and explores the 
potential for agent-based implementation. By combining these approaches, the research 
aims to produce actionable insights and tools that support the digital transformation of 
small-scale food producers. 

Research on production scheduling in small and medium-sized bakery enterprises 
has gained increasing attention in recent years, particularly due to the sector’s role in local 
food supply chains and its susceptibility to inefficiencies in resource usage. Several studies 
highlight the challenges of coordinating multi-stage production in bakeries, especially 
under no-wait constraints and variable job durations (Nouri et al., 2021; Yildiz & Yildiz, 
2020). These constraints are commonly addressed through flexible flow shop scheduling 
models, which have been shown to reflect the operational characteristics of SME bakeries 
more accurately than classical job shop models (Wang et al., 2019). 

Heuristic methods such as FIFO and SPT have traditionally been employed in 
practice due to their simplicity and low computational cost. However, their effectiveness 
is limited when dealing with complex multi-stage production processes involving shared 
resources. As noted by Nasution et al. (2020), such heuristics can result in bottlenecks and 
long idle times, especially when longer jobs occupy critical resources early in the schedule. 
To overcome these limitations, metaheuristic algorithms have emerged as powerful tools 
for production scheduling. The Firefly Algorithm (FA), introduced by Yang (2009), has 
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been applied in manufacturing systems for its simplicity and strong convergence 
properties. Recent studies by Alkahtani et al. (2021) and Sahu et al. (2022) demonstrate the 
effectiveness of FA in minimizing makespan and balancing resource utilization in flow 
shop environments. Similarly, the Whale Optimization Algorithm (WOA), proposed by 
Mirjalili and Lewis (2016), has been successfully implemented for scheduling problems 
involving complex constraints. Its applications in industrial settings include hybrid flow 
shops, robotic cell scheduling, and batch processing systems (Gomes da Silva et al., 2023; 
Pradana et al., 2021). In a related study, Nugraheni et al. (2025) applied WOA for 
production scheduling in Indonesian bakery SMEs, demonstrating its suitability in 
capturing real-world constraints. Further developments explored WOA-based solvers for 
no-wait FFS problems (Jonathan et al., 2024). 

Additionally, agent-based modeling has been increasingly adopted for simulating 
production systems and developing decentralized scheduling frameworks. According to 
Garro and Vetrano (2019), agent-based systems provide flexibility, scalability, and 
adaptability in dynamic environments. In the context of SME bakeries, such models can 
facilitate autonomous decision-making by representing each job or machine as an 
intelligent agent capable of negotiating for resource access and managing time-sensitive 
tasks. Similar agent-based scheduling frameworks have also been explored in the context 
of single-machine production systems. Nugraheni and Abednego (2013) proposed a multi-
agent architecture that integrates hyper-heuristics with agent coordination to address 
dynamic scheduling challenges. Their results demonstrated the scalability and flexibility of 
agent-based control when coupled with heuristic-based decision-making in real production 
environments. 

These existing works form the foundation for the present study, which integrates 
a no-wait flexible flow shop model with metaheuristic scheduling and explores the 
potential for agent-based implementation. By combining these approaches, the research 
aims to produce actionable insights and tools that support the digital transformation of 
small-scale food producers.  

 

3. Methods 

3.1 Illustrative Example of the Scheduling Problem 
To clarify the scheduling logic used in this study, we present a simplified example 

involving four jobs processed sequentially through four stages: mixing, proofing, baking, 
and cooling. Each stage is operated by a single machine, and a no-wait constraint is 
enforced between the first three stages. This example illustrates how task timing and 
resource contention emerge under realistic production constraints. Table 1 lists the 
processing times for each job, measured in minutes. 

Assuming a First-In-First-Out (FIFO) scheduling rule, the resulting schedule is 
visualized in Figure 1 using a Gantt chart. The diagram highlights how the no-wait 
constraint between mixing, proofing, and baking shapes the job sequence and causes 
resource blocking across stages. This illustrative case provides a conceptual foundation for 
understanding the more complex real-world scenarios analyzed in subsequent sections. 
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Table 1: Processing Times for Illustrative Example (in minutes). 

Job Mixing Proofing Baking Cooling 

J1 20 10 30 15 

J2 25 12 35 15 

J3 15 11 40 10 

J4 22 10 32 18 

 
 

 

Figure 1. Gantt Chart for Illustrative FIFO Schedule With No-Wait Constraint. 

3.2 Case Study Description 
The real-world case study for this research involves the daily production 

operations of a small-scale bakery in Indonesia that specializes in a wide variety of bread 
products commonly produced by small Indonesian bakeries. The bakery produces 20 
types of bread, including roti sobek, roti keju manis, roti isi pisang, croissant, danish coklat, roti isi 
sosis, roti gulung coklat, and others. Each type of bread requires a specific combination of 
processing times for mixing, proofing, baking, and cooling stages. 

In total, 20 jobs are scheduled each day, each corresponding to one batch of a 
different bread type. Each bread type follows a sequential process involving multiple 
stages: mixing, fermentation and proofing, baking, and cooling. The duration and 
complexity of each stage vary by product, as summarized in Table 2. Each job represents 
a single batch, with batch sizes varying from 18 to 25 pieces depending on the bread type. 
For example, burger buns are produced in batches of 18 pieces, while sourdough and toast 
bread reach up to 25 pieces per batch. These jobs are processed through four main stages: 
mixing, proofing, baking, and cooling. The bakery utilizes shared resources in each stage: 
2 mixers, 2 proofers, 2 ovens, and 2 cooling racks. All machines of the same type are 
treated as identical (homogeneous), following a first-available assignment policy.  

A no-wait constraint is enforced between the mixing and proofing stages to reflect 
actual operational behavior, where the dough must proceed immediately from mixing to 
proofing without delay. This constraint applies only to the first two stages, while waiting 
is allowed between proofing, baking, and cooling depending on equipment availability. 
While this no-wait condition reflects the actual workflow of the case study bakery, it is 
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acknowledged that in other SME contexts, occasional delays between stages may occur 
due to human or operational variability. 

The case study captures the typical production environment of Indonesian micro, 
small, and medium-sized enterprises (MSMEs) in the bakery sector, which often rely on 
semi-automated equipment and practical scheduling habits. This model allows us to 
evaluate intelligent scheduling algorithms under realistic and heterogeneous conditions, 
including variability in bread processing requirements and equipment usage. 
 
Table 2: Processing durations per bread type (in minutes). 

Job Mixing Proofing Baking Cooling 

J1 25 150 35 45 

J2 20 120 30 35 

J3 22 130 35 40 

J4 20 90 30 35 

J5 22 120 35 40 

J6 20 120 35 40 

J7 22 90 25 30 

J8 18 100 30 30 

J9 18 90 25 30 

J10 20 60 25 30 

J11 22 180 40 50 

J12 22 150 35 40 

J13 20 120 30 35 

J14 20 90 30 35 

J15 18 120 35 40 

J16 24 180 40 40 

J17 20 120 35 40 

J18 20 100 30 35 

J19 18 90 25 30 

J20 20 100 30 35 



                                                   C.E. Nugraheni et al.                                                              99 

© 2025 The Authors. Journal Compilation    © 2025 European Center of Sustainable Development.  
 

3.3 Scheduling Problem Formulation 
The production process is modeled as a no-wait flexible flow shop scheduling 

problem (NWFSP), in which multiple jobs must pass through four stages (mixing, 
proofing, baking, cooling), each equipped with two parallel machines of the corresponding 
type. Due to the no-wait constraint between mixing and proofing stages, these two are 
grouped into a single processing block (Block A) to ensure uninterrupted flow and realistic 
modeling of early-stage operations. Each job consists of three processing blocks: Block A 
(Mixing and Proofing), Block B (Baking), and Block C (Cooling). The main objectives are 
to minimize the overall makespan and reduce total oven idle time, reflecting both 
productivity and energy efficiency. 

Each job is treated as an independent unit that must pass through the blocks in 
sequence without delay between stages in Block A. The assignment of jobs to available 
ovens and racks is handled using either fixed (pre-assigned) or greedy (first-available) 
strategies. The scheduling algorithm generates ordered job sequences. These sequences are 
then evaluated through simulation procedures that determine resource allocation and 
compute performance metrics. 

3.4 Heuristic Scheduling Approaches 
Two classical heuristics are implemented for baseline comparison: 

• First-In-First-Out (FIFO): Jobs are scheduled strictly in the order of their arrival. 
This method reflects the typical manual scheduling approach observed in many 
SMEs. 

• Shortest Processing Time (SPT): Jobs are sorted by their total expected processing 
time (sum of mixing, proofing, baking, and cooling durations), with shorter jobs 
processed earlier. 

Both heuristics are evaluated using a greedy resource assignment policy, where each job is 
allocated to the first available machine at each stage. The resulting schedules are assessed 
based on makespan and oven idle time. 

3.5 Metaheuristic Optimization 
This study employed two population-based metaheuristic algorithms: Firefly 

Algorithm (FA) and Whale Optimization Algorithm (WOA), selected for their 
complementary strengths in local exploitation and global search. Both algorithms were 
adapted to handle job sequencing in the no-wait production environment using position-
based solution encoding. 

To ensure comparability, both algorithms used the same parameter settings: 
population size of 50 and maximum iteration of 100. Further details on algorithm-specific 
behavior can be found in the cited references. Their objective functions were evaluated 
under three scenarios: (1) makespan minimization, (2) total oven idle time minimization, 
and (3) Pareto-based multi-objective optimization. 

3.6 Evaluation Procedure 
The quality of each schedule was assessed using two metrics: total makespan and 

total oven idle time. For the metaheuristic methods, each experiment was repeated ten 
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times to account for stochastic variation. To compare the heuristic baselines (FIFO and 
SPT) with metaheuristic outcomes, a paired-sample t-test will be conducted for each 
optimization scenario. The statistical tests were performed at a 95% confidence level. 
Detailed results and interpretation are presented in Section 4.4. 

3.7 Integration Plan with Agent-Based Architecture 
The optimized job sequences produced by the metaheuristic algorithms in this 

study are designed to be operationalized within an agent-based scheduling architecture, as 
shown in Figure 2. This approach is adapted from earlier work on multi-agent hyper-
heuristic systems for single-machine scheduling (Nugraheni & Abednego, 2013), which 
demonstrated the benefits of decentralized control, agent coordination, and dynamic 
adjustment. In the envisioned implementation, each job and machine will be represented 
by intelligent agents, with a SchedulerAgent managing the application of heuristic-derived 
sequences and resolving conflicts in real time. This direction aligns with the goal of 
enabling responsive and robust decision-making in small-scale, resource-constrained 
bakery environments. 

 

Figure 2. Conceptual architecture of the agent-based bakery scheduling system. 

 
In this architecture, each JobAgent represents a batch of bread to be processed, 

negotiating access to shared resources with MachineAgents, which control the status and 
availability of mixers, proofers, ovens, and cooling racks. A central SchedulerAgent 
oversees the execution of the optimized job sequence and manages reordering when 
disruptions occur. Optionally, a MonitorAgent may be employed to track key performance 
metrics—such as makespan and idle time—and to provide feedback for runtime 
adaptation. This agent-based configuration enables distributed control while preserving 
the global optimization objectives defined by the metaheuristic layer. 
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4. Results 

4.1 Summary of Optimization Results 
Table 3 and Figure 3 summarize the performance of all four scheduling methods 

across three optimization scenarios: makespan minimization (M), idle time minimization 
(I), and Pareto-based multi-objective optimization (P). The metaheuristics (FA and WOA) 
consistently outperformed heuristics (FIFO and SPT) across all cases, either in minimizing 
total production time, reducing oven idle time, or balancing both. 
 
Table 3: Best and Average Performance of Heuristic and Metaheuristic Methods across Three 
Optimization Scenarios. 

  Makespan (M) Idle Time (I) Makespan (P) Idle Time (P) 

Method Type Best Average Best Average Best Average Best Average 

FIFO Heuristic 1280 - 1465  1280  1465  

SPT Heuristic 1298 - 1036  1298  1036  

FA Metaheuristic 1235 1242.0 1780 1785.4 1233 1238.9 1776 1781.6 

WOA Metaheuristic 1233 1234.8 615 779.1 1235 1241.8 1778 1784.3 

 
 

 

Figure 3: Best makespan and oven idle time values achieved by each scheduling method under three optimization 
objectives: makespan minimization (M), idle time minimization (I), and Pareto-based multi-objective optimization 
(P). 

 
In the makespan minimization scenario, WOA achieved the lowest completion 

time (1233 minutes), slightly outperforming FA (1235 minutes) and clearly outperforming 
the heuristics. Conversely, in the idle time minimization scenario, WOA produced the 
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most efficient oven usage (615 minutes idle), followed by FA (833 minutes). These results 
indicate WOA's strength in focused single-objective search. 

For the Pareto-based scenario, FA obtained the best overall trade-off solution 
with 1233 minutes of makespan and 1776 minutes of idle time. The results highlight that 
WOA tends to perform best under single-objective goals, while FA excels in balancing 
multiple objectives. 

These findings are visually reinforced in Figure 3, where the makespan and idle 
time metrics are plotted for each method and optimization strategy. This comprehensive 
comparison confirms the practical benefit of adopting metaheuristic strategies in small-
scale, no-wait production settings. 
 
4.2 Summary of Optimization Results 

To validate the observed performance improvements, paired-sample t-tests were 
conducted to compare heuristic results against metaheuristic outcomes across all three 
optimization scenarios. Each test evaluated whether the reductions in makespan and oven 
idle time achieved by FA and WOA were statistically significant at a 95% confidence level. 

The results confirm that the improvements were statistically significant for both 
performance metrics. In makespan minimization, both FA and WOA yielded significantly 
lower completion times than FIFO and SPT. In the idle time minimization experiment, 
metaheuristics again outperformed heuristics with strong statistical support. The Pareto-
based results further reinforced the overall advantage of metaheuristic approaches in 
producing high-quality, balanced solutions. 

These statistical findings support the rejection of the null hypothesis and affirm 
the effectiveness of metaheuristic methods in optimizing scheduling performance under 
realistic production constraints. 

 
5. Discussion  

The experimental findings offer strong evidence of the advantages provided by 
metaheuristic scheduling methods over traditional heuristics in small-scale, resource-
constrained production environments. Across all three optimization scenarios: makespan 
minimization, idle time minimization, and Pareto-based multi-objective optimization, both 
Firefly Algorithm (FA) and Whale Optimization Algorithm (WOA) consistently produced 
superior schedules. 

In single-objective optimization, WOA achieved the lowest makespan (1233 
minutes) and the lowest idle time (615 minutes) when each objective was targeted 
independently. These results indicate WOA's strength in intensification and its ability to 
converge on high-quality solutions within a focused search. FA also performed 
competitively, particularly in makespan optimization, delivering improvements over both 
FIFO and SPT baselines. 

In the multi-objective scenario, where makespan and idle time were jointly 
optimized, FA delivered the best overall trade-off, achieving 1233 minutes of makespan 
and 1776 minutes of idle time in its best run. This highlights FA’s capability in maintaining 
diversity and exploring the solution space effectively under conflicting objectives. 
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To further understand the consistency and robustness of each method, Figure 4 
presents the distribution of scheduling performance metrics across 10 independent runs 
of FA and WOA. The boxplots show both the variability and the central tendency of 
makespan and oven idle time. 
 

 

Figure 4: Distribution of FA and WOA performance across 10 runs.  

 
In the makespan minimization scenario, WOA exhibits lower variance and a 

slightly better median makespan than FA, confirming its effectiveness and consistency for 
this objective. For idle time minimization, WOA also demonstrates superior performance 
with significantly lower idle time values and a more compact distribution, indicating strong 
suitability for oven efficiency optimization. 

In the Pareto-based multi-objective scenario, FA achieves better trade-offs, with 
lower median values for both makespan and idle time. This supports earlier observations 
that FA is more capable of maintaining balanced solutions under competing objectives. 

These results reinforce the earlier findings that WOA is well-suited for focused, 
single-objective optimization, while FA provides more balanced solutions in multi-
objective contexts. Statistical hypothesis testing confirmed the significance of these 
improvements. Paired-sample t-tests showed that the differences between heuristic and 
metaheuristic methods were statistically significant at the 95% confidence level across all 
scenarios. These findings support the conclusion that metaheuristic algorithms are not 
only more effective in practice but also offer statistically reliable enhancements in both 
completion speed and resource utilization. 

Overall, the results demonstrate that FA and WOA are practical, adaptable, and 
high-performing alternatives to rule-based heuristics, with the flexibility to suit different 
production goals. For small-scale enterprises aiming to improve efficiency without major 
system overhauls, metaheuristic scheduling provides a compelling and scalable solution. 

While the empirical results offer clear support for the proposed metaheuristic 
approach, it is also important to reflect on the methodological assumptions and contextual 
boundaries that may influence its broader application. The following considerations 
highlight areas for refinement and extension. 
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First, the present study focuses on the application of individual metaheuristic 
algorithms. However, recent advancements in hybrid and adaptive scheduling approaches 
suggest promising avenues for further performance improvements. Hybrid algorithms that 
combine metaheuristics with local search techniques, adaptive parameter tuning, or hyper-
heuristic strategies have shown strong potential in various production environments. 
Future research may explore whether combining the exploration strength of WOA or the 
multi-objective capability of FA with adaptive or hybrid components could yield superior 
results in complex bakery scheduling contexts. 

Second, one important modeling assumption in this study is the strict no-wait 
constraint between mixing and proofing stages. This constraint was adopted to accurately 
mirror the workflow observed in the studied bakery, where continuous dough processing 
is necessary to preserve fermentation quality. However, in broader SME bakery settings—
especially those with manual or semi-automated processes—minor delays between stages 
may naturally occur. Relaxing the no-wait constraint could enhance model generalizability 
and allow for greater adaptability under real-world uncertainties such as labor availability 
or equipment sharing. Future work may explore the effect of partial-wait conditions on 
the performance of metaheuristic algorithms and their ability to accommodate less rigid 
workflows. 

Finally, it is important to acknowledge that the case study used in this research is 
based on a single small-scale bakery in Indonesia. While the modeled scenario captures 
common operational patterns in SME bakery production—such as semi-manual 
workflows and shared equipment—the diversity of bakery operations across different 
regions may limit the direct generalizability of these findings. Factors such as batch sizes, 
layout constraints, labor practices, or cultural variations in product mix could influence 
scheduling dynamics. Future research should therefore consider cross-validation using 
data from multiple bakeries with varying capacities and operational characteristics to 
evaluate the scalability and adaptability of the proposed approach. 

 
6. Conclusion  

This study investigated the application of metaheuristic algorithms to a no-wait 
flexible flow shop scheduling problem, using a real-world case of an artisan bakery with 
shared equipment and semi-manual operations. Two heuristic baselines (FIFO and SPT) 
were compared with two bio-inspired metaheuristics: Firefly Algorithm (FA) and Whale 
Optimization Algorithm (WOA), across three optimization scenarios: makespan 
minimization, idle time minimization, and multi-objective trade-off. 

The results demonstrate that metaheuristics consistently outperformed heuristics 
in all scenarios. WOA delivered the best performance in single-objective runs, achieving 
the lowest makespan (1233 minutes) and the lowest idle time (615 minutes). In multi-
objective optimization, FA produced the most balanced solution, achieving a strong trade-
off between the two criteria. Statistical testing confirmed that the improvements achieved 
by metaheuristics were significant at the 95% confidence level. 

These findings validate the potential of metaheuristic scheduling as a practical and 
scalable alternative for small-scale production environments. Their flexibility in targeting 
specific objectives or balancing trade-offs makes them especially suitable for resource-
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constrained SMEs seeking to improve production efficiency without major capital 
investments. 

Importantly, the optimized scheduling solutions produced in this study will be 
implemented as the decision-making logic of an autonomous agent within an agent-based 
production scheduling system currently under development. This integration enables real-
time, adaptive scheduling capabilities for SME bakeries, further enhancing system 
responsiveness and operational efficiency.  

Future research may incorporate additional real-world factors such as operator 
availability, stochastic job arrivals, or energy constraints, and may explore hybrid or 
adaptive algorithmic strategies to further boost performance. Beyond its technical 
contributions, this study supports broader sustainability goals by enabling better utilization 
of energy-intensive equipment through intelligent scheduling. The approach aligns with 
SDG 9 (Industry, Innovation and Infrastructure) and SDG 12 (Responsible Consumption 
and Production), contributing to more responsible and efficient production systems in the 
SME sector.  

Future research may incorporate real-time operational factors such as fluctuating 
energy prices, worker availability, or machine reliability to further enhance the practical 
applicability of the proposed scheduling system. These variables reflect real-world 
uncertainties often faced by SME bakeries and could be modeled through dynamic 
simulation or adaptive control strategies. Additionally, the integration of hybrid 
metaheuristics or learning-based approaches, such as reinforcement learning or hyper-
heuristics, offers a promising direction for improving performance under complex and 
evolving conditions. Interdisciplinary collaboration with energy analysts, behavioral 
scientists, and systems engineers will be essential in extending the scope and realism of the 
proposed framework. 
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