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ABSTRACT:  
Harmful algal blooms (HABs) are rapidly expanding in marine environments, posing serious risks to 
ecosystems, public health, and water quality. There is a growing need for more accurate forecasting 
techniques and intelligent systems that can generate accurate forecasts about the presence of HABs 
and, as a result, evaluate the effects of them on water quality. Direct forecasts of HABs presence are 
extremely difficult to be implemented due to the nature of the problem. Many studies use chlorophyll 
concentrations to detect HABs but such an alteration in chlorophyll concentration consists an 
immediate effect and not the root of the problem. Trying to early detect a forthcoming HAB, by 
investigating the impact of wind-related variables in the appearance of a HAB event in the marine 
system of Thermaikos gulf (NW Aegean Sea) with in-situ data, is the purpose of this research. Primary 
results have shown a causation among them, especially to east and north-west winds, leading to 
research paths towards to the spatial distribution of the phenomenon. An outcome that demonstrates 
the potential transporting of the HAB and also could assist in the creation of early warning systems.   
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1. Introduction and related work 
 

Photosynthetic organisms such as planktonic microalgae are the life force of 
aquatic ecosystems. They produce oxygen, fix carbon and form the foundation of food 
webs. Nevertheless, under some circumstances the abundance of their population can 
increase to the point where it could be harmful to people as well as other aquatic species. 
These growths are commonly called ”Harmful Algal Blooms” (HAB). According to the 
type of algae, it is possible in some cases to spot an algal bloom by its color; this leads to 
at least a harmful aesthetic impact, affecting e.g. tourism and the local community (Red 
tide). However, not all algal blooms occur on the surface of the water body having a direct 
visual impact. Fish and other species may perish as a result of HABs’ reduction of water’s 
oxygen content, harming the ecosystem. In other cases, microalgae, which are capable of 
producing polysaccharides and thus form dense layers of mucus in the water column or 
on the surface, are likely to grow, with adverse effects on many sectors, such as fisheries, 
aquaculture, tourism, and, where the phenomena are severe, may kill the flora and fauna 
of the marine area where they occur (Nikolaidis et al., 2008).  
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During a HAB, people can get exposed to toxins from fish and shellfish they may 
consume, from swimming in or drinking the water, and from the air they breathe 
(Anderson et al., 1995, Theodorou et al., 2020). It is an indisputable fact that an exposure 
to toxins usually has no antidote (Grattan et al., 2016). For this reason, it is of paramount 
importance to have early predictions to achieve prevention and mitigation measures. A 
topic of particular interest is the identification of the factors/variables that affect the HAB 
event. HABs may be caused by a variety of variables, but research is still ongoing to 
determine how these environmental parameters interact to produce a harmful algal bloom. 
Climate change is an indisputable factor that impacts the HABs (Wells et al., 2015, Gobler 
et al., 2020, Petoussi et al., 2011), along with the subsequent increase in temperature (Silva 
et al., 2023, Aboualaalaa et al., 2022). A fact that is also highlighted from the report (IPCC, 
2022) of the Intergovernmental Panel on Climate Change (IPCC). Even though HABs are 
a natural phenomenon, predicting them remains difficult. As one can observe in the 
simplest case of the recording of the dinoflagellates of the genus Gambierdiscus in the 
Mediterranean, the distribution range of these species was previously thought to occur in 
tropical and subtropical areas. The worrying aspect of this expansion is that these 
dinoflagellates are the causative agents of Ciguatera disease, which is caused in humans by 
the consumption of fish that have accumulated toxins produced by the cells of the genus 
Gambierdiscus (Aligizaki et al. 2008). 

Many studies attempt to predict HABs using supervised learning methods, such 
as classification and support vector machines, while others exploit statistical models. Some 
others used a more promising class of forecasting models, the hybrid methods that are 
also used to forecast algal blooms as mentioned by Giddings et al. (2014).  

While others, trying to work with issues that occur when dealing with HABs 
forecasts, like data availability. Nevertheless, hybrid methods are the focus of recent 
studies; Giddings et al. used a combination of models to reduce the number of false 
positive events (80% accuracy), while Liu et al. (2022) combined a wavelet transformation 
and an LSTM network to create a method that can reliably forecast the algal dynamics on 
multiple time scales. A comparison between hybrid machine learning models is the work 
of study of Molares et al. (2023). Their study verified that hybrid models provide more 
accurate results than simple techniques. This verification has been accomplished by 
implementing the models proposed in other studies since there is no reference data set in 
the prediction of HAB that allows an objective comparison of the models.   

As already been mentioned, one of the many issues that occur when dealing with 
HABs forecasts, is the data availability. Most of the times, researchers have to deal with 
large number of missing values or limitations on the number of variables that are available 
for process, etc. That is the reason why most of the studies focus on indirect forecasts 
relevant to the next possible algal bloom event, meaning that they monitor several water 
characteristics and give an indirect forecast about the time of an algal event peak, without 
providing any information about the percentage of the peak. Harley et al. (2020) used 
environmental data to classify shellfish above and below a threshold, achieving an accuracy 
of approximately 80%. Wind speed and satellite (chlorophyll) data, aiming to classify 
bloom or no bloom events were used in the study of Silva et al. (2023). The same data 
combination of chlorophyll images and wind direction was utilized in the conceptual 
forecasting model in the study of Cusack et al. (2016). As for Kleindist et al. (2014) used 
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historical shellfish harvesting data to predict bloom severity levels aiming to define major 
storms. Wind circulation was exploited by Raine et al. (2010) to predict algal events 
according to natural wind circulation in the bays of Ireland. To achieve their predictions, 
they also used a five-day weather forecast. Gonzales et al. (2014) also used meteorological 
data to validate their SVM models and identify if there was a bloom or not and forecast 
the algal occurrence indirectly. Weather variables and more specifically wind speed and 
direction were also used by Grifoll et al., (2011) in order to early forecast a forthcoming 
pollution in harbours. According to Grifoll, the hydrodynamics of a receptor are important 
and highly connected to the problem. A strong interaction between oceanographic, 
meteorological, and biological variables in relation to the behavior of phytoplankton 
abundance is also highlighted in the works of Sandoval et al. (2018). They also mention 
that the understanding of these phenomena requires the understanding of the 
physiological adaptations of these microalgae, meaning the understanding of which are the 
variables that are directly related to the HAB at the national, regional and local levels. 
Moreover, Yang et al. (2024) created two forecasting models that could reconstruct the 
conditions on the surface highlighting the importance of dynamic factors and specifically 
the wind. Marine meteorological factors such as wind and atmospheric pressure were used 
and in the study of Kang et al. (2023). Apart from the data availability issue, many either 
investigate the spatial or temporal dynamics of the problem and simultaneously neglect 
the underlying biological root of the problem. By seamlessly incorporating both the spatial 
and temporal dimensions alongside an understanding of biological causality, a more 
holistic and explainable forecasting approach emerges. This integration enables the 
identification of intricate patterns and relationships between environmental variables over 
time and space, aligning with the underlying biological mechanisms governing phenomena 
of interest.  

Given the fact that many studies have used machine learning or hybrid methods 
to predict HABs, it is indisputable that they struggle to deal with limited data and the 
complexity of environmental systems. While various meteorological factors like 
temperature, rainfall, and wind have been linked to HABs, most existing work focuses on 
correlations rather than clear explanations. In this study, we investigate the possible effect 
of wind speed and direction on the appearance of HAB events and show that these blooms 
are changing over time and space.  
 
2. Data 
 

Ιn situ data of the marine environment are collected in the area of the port of Nea 
Michaniona, Greece (Thermaikos gulf, NW Aegean Sea). In the area of Nea Michaniola, 
data come from sensors installed at the outer pier of the port from the Department of 
Environmental and Hydrology of Central Macedonia Region. The available data are from 
14/10/2022 with a total of 79,185 records (to date) and with a collection frequency of 
every 15'. The data collected are related to physico-chemical characteristics of the water 
such as water temperature, salinity, etc. as well as meteorological variables such as wind 
speed, wind direction, humidity, etc. 
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Figure 1: Location of the sensor in Nea Michaniona harbor (Thermaikos gulf, NW Aegean Sea) 

 
Apart from in situ data, for the purpose of this study the Laboratory Unit of 

Marine Toxic Microalgae of the Aristotle University of Thessaloniki provides data on the 
presence and abundance of potentially toxic and/or harmful microalgae. In a first phase, 
the study is processing populations of the dinoflagellate G. cf. hyalina, which is associated 
with the production of polysaccharides and the formation of often extensive mucoid 
aggregations in marine areas, causing a multitude of problems in anthropogenic activities. 
The data concerning harmful microalgae have mainly a weekly measurement frequency. 

The variables that are collected are the following: 
 

Table 1: Variables description 
N/O Description 

0 AIR PRESSURE (mbar) 

1 Battery Voltage (V) 

2 EXO BATTERY (V) 

3 Phycoerythrin (µg/l) 

4 CHLOROPHYL (µg/l) 

5 DO (mg/l) 

6 DO_% (%) 

7 TDS (mg/l) 

8 TSS (mg/l) 

9 CONDUCTIVITY_ACT (µS) 
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10 CONDUCTIVITY_SP (µS) 

11 SALINITY (PSU) 

12 RELATIVE HUMIDITY (%) 

13 AIR TEMP (°C) 

14 TURBIDITY (NTU) 

15 WATER TEMPERATURE (°C) 

16 WIND DIR avg (°) 

17 WIND DIR gust (°) 

18 WIND SPEED avg (m/s) 

19 WIND SPEED gust (m/s) 

 
3. Results  
 

In order to investigate possible relationships between the variables we 
implemented correlation analysis and causal inference. Correlation analysis is the statistical 
method that determines if there is a relationship between two variables and how much one 
variable changes the other. It is expressed as a correlation coefficient ranging from -1 to 
1. A value close to 1 indicates a strong positive relation, a value close to -1 a strong negative 
one. A value close to 0 indicates weak on no correlation. More specifically, we used 
Pearson correlation coefficient, which measures the strength of the linear relationship 
between two variables. When correlation coefficient is applied to a sample is represented 
in equation (1): 

𝑟𝑥𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1  
 (1) 

 
 

Where 𝑛 is sample size, 𝑥𝑖, 𝑦𝑖  are the individual sample points indexed with 𝑖, 𝑥̅ 

the sample mean and analogously for 𝑦̅. 
The results of the correlation analysis are shown in the following picture. As we 

observe there are linear relationship between phycoerythrin and chlorophyll, between 
dissolved oxygen (DO) and conductivity, between air temperature and water temperature, 
etc. In the heatmap, dark red or dark blue shows the strongest relationship between the 
variables. These colors represent values close to +1(strong positive) or -1(strong negative) 
respectively. 

Even though there are correlations between variables, there is nοt a direct linear 
correlation to the variable of interest, the abundance of G. cf. hyalina. Causal inference is 
the process of identifying and quantifying the causal effect of one variable on another. 
Unlike correlation, causation suggests a cause-and-effect relationship between two 
variables. In causal inference, the first step is to formulate a hypothesis and then test it 
with statistical methods. To explore the causality in this study we implemented a Directed 
Acyclic Graph (DAG), meaning a directed graph with no directed cycles, in which nodes 
represent the variables and the edges directed from one vertex to another, such that 
following those directions will never form a closed loop. The DAG that was constructed 
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based on the knowledge of the domain, along with correlation analysis results, as seen in 
Figure 3.  

 

Figure 2: Correlation analysis heatmap 

After the construction of the DAG and the use of it to define the causal model, 
we determine which variables (estimands) need to be controlled to estimate the causal 
effect, the appearance of G. cf. hyalina. The results indicate that the phenomenon appears 
to be influenced by wind speed and as a result, it could be spread in nearby locations. 
Particularly, the estimation of the causal inference showed in the following expression: 

𝑑

𝑑 [𝑊𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 𝑎𝑣𝑔 (
𝑚

𝑠
)]

(𝐸[𝐺. ℎ𝑦𝑎𝑙𝑖𝑛𝑎]) (2) 
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Figure 3: Directed acyclic graph 

 
Once the estimand is defined (a.k.a. wind speed), we selected a suitable statistical 

method to estimate it. We used linear regression and the results showed that the estimated 
causal effect is 1.53, meaning that if the “treatment” (wind speed) is changed by 1 unit, the 
“outcome” (G. cf. hyalina) will be increased by 1.53 units on average due to the causal effect. 
Moreover, in order to validate the results we performed a refutation test; specifically we 
added a random cause to ensure that the estimated effect is robust. The refutation showed 
a minimal change in the estimated effect as presented in Table 2, which indicates that the 
result is robust and reliable. 
 

Table 2: Causal inference – Refutation test results 
Type of effect Value 

Estimated effect 1.53 

Effect after refutation 1.52 

 

Knowing that wind speed affects the appearance of the phenomenon, the 
hypothesis that wind direction plays also a significant role is something to be investigated. 
Firstly, in Figure 4 we can observe the peaks of abundance of G. cf. hyalina, the variable of 
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interest, from October 2022 to December 2024. As we observe, there is no periodicity in 
the data and as we have already mentioned that, it is influenced by wind speed. In Figure 
5, we can observe that wind speed increases shortly, preceding spikes in G. cf. hyalina 
concentrations, while during the peaks there is a decrease in wind velocity.  

 

Figure 4: Gonyaulax – hyalina abudance 
 

Figure 5: Gonyaulax hyaline abudance and wind speed time series  
 
The observed patterns suggest that the initial position of the phenomenon is not 

fixed but instead shifts according to prevailing wind conditions, leading to noticeable 
spatial changes over time. Regarding the relationship of G. cf. hyalina and wind direction, 
Figure 6 is a wind rose plot that shows that G. cf. hyalina concentrations vary according to 
wind direction. When wind is blowing from Eastern direction, G. cf. hyalina population 
has the highest concentration, while blowing from North or North-West direction, has 
also high concentration but lower than when blowing from the East. Winds from other 
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directions (West, South-West, South-East) were associated with much lower or negligible 
concentrations of this species.   

                   Figure 6: Windrose plot 

 
 
4. Conclusion  

 
One of the many issues that occur when dealing with HABs forecasts, is data 

availability, complex ecological interactions and the indirect approach of the most 
forecasting studies. In this study, there is a HAB research by focusing on G. cf. hyalina, a 
species of interest whose sporadic appearances and elevated concentrations are difficult to 
predict using traditional methods. 

Most of the times, researchers have to deal with large number of missing values 
or limitations on the number of variables that are available for process, etc. In the present 
study, we utilized the most complete dataset available, nevertheless, future efforts should 
incorporate advanced imputation techniques (e.g., multiple imputation, deep learning 
approaches) and data fusion strategies that integrate satellite, in-situ, and historical datasets. 
Another limitation, even though HABs forecasts are studied in an abundance of papers, is 
the lack of studies on the pathway of toxin accumulation in shellfish and the 
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geomorphology of the marine area where the events take place. In this study, by applying 
a causal inference approach, we identified a robust causal relationship between wind-
related variables and G. cf. hyalina concentrations. Specifically, our analysis revealed that 
both wind speed and wind direction significantly influence the temporal and spatial 
patterns of G. cf. hyalina occurrence. Although linear regression offers interpretability in 
estimating causal effects within a DAG-based framework, it may not capture nonlinear 
interactions inherent in ecological systems. Future studies could apply non-parametric 
estimators (e.g., generalized additive models, causal forests) or causal discovery algorithms 
(e.g., PC or FCI) to learn causal structure and improve robustness. In addition, temporal 
overlays demonstrated that spikes in abundance often follow periods of intensified wind 
activity, while windrose analysis further indicated that winds from the East and Northwest 
directions are particularly associated with high G. cf. hyalina levels. While this study 
highlights wind-driven spatial patterns of G. cf. hyalina, it does not explicitly model 
physiological or ecological mechanisms behind bloom formation. Future work should 
integrate key biological variables, including nutrient availability, light conditions, and 
species-specific life history traits such as cyst germination and growth thresholds. 
Moreover, it is in our purposes to incorporate spatial-temporal simulations (e.g., wind-
driven diffusion models) to better capture the dynamic propagation of G. cf. hyalina 
blooms. Another indisputable fact is that the study is restricted to G. cf. hyaline within a 
specific region. This fact is limiting the generalizability to other HAB species or 
ecosystems. This focus was dictated by the availability of consistent and well-documented 
historical observations. Nonetheless, future research should aim to expand monitoring 
efforts to include multiple species and leverage satellite data.  

All the above findings demonstrate the potential transporting of the G. cf. hyalina, 
leading to the conclusion that predictive models could assist in early-warning systems and 
strategies. Future research should translate these insights into a real-time monitoring and 
forecasting system by integrating environmental sensors, predictive modeling, and 
decision-support interfaces. These tools should be rigorously assessed for forecasting 
accuracy, cost-effectiveness, and usability to support aquaculture and coastal management 
under HAB threat conditions. Lastly, the ability to generate a public data set with a 
complete time series not only would allow for novel approaches to HAB prediction but 
also would provide an objective comparison of the models investigated in other studies 
(Molares et al., 2023).  
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